

Fuel cell electric vehicles – outlook on market potential and industry challenges

Dr. Martin Linder, McKinsey & Company F-CELL, Stuttgart, September 27th, 2011

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

McKinsey&Company

Major driver for alternative powertrains is tightening CO₂ regulation – significant reductions announced until 2020, but uncertainty of outlook

- Future powertrain market penetration will be mainly driven by CO₂ regulations, TCO, and fit with customer needs
- Regional differences are projected to be substantial (e.g., speed of adoption, public incentives)
- To be in line with the "2°C global warming" target, CO₂ emission reduction to 10 g/km are required in the private road transport sector by 2050

1 Regulation under review by the European Parliament: 2015, 2020, 2025 targets will be determined by 2015

A global industry group is evaluating the commercialization of a H₂-infrastructure and fuel cell electric vehicles

Objective

- Fact-based evaluation of the market potential of FCEV compared to BEV, PHEV, ICE
- Development of an integrated perspective across the H₂ value chain based on proprietary industry data
- Assessment of hydrogen retail infrastructure rollout in GER
- Definition of an integrated roll-out scenario for
 FCEV market penetration with major car OEMs
- Establishment of a future consortium for the H₂ infrastructure roll-out
- Implementation of a business case

27 private companies, 1 NGO, and 2 GOs across the value chain evaluated the potential of alternative power-trains for passenger cars in Europe Core questions

- How do FCEVs, BEVs, and PHEVs compare to ICEs on
 - Cost
 - Emissions
 - Energy efficiency
 - Driving performance?
- What are viable production and supply pathways?
- What are the potential market segments for the different powertrain technologies?

A portfolio of power-trains for Europe: a fact-based analysis

The role of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles

Approach and principles

- 3 reference car segments
- Well-to-wheel
- >10,000 company data in a "clean room" environment

Proprietary data were collected on all drive trains and at a granular level

Key insights

Electric driving has clear benefits over the combustion engine on CO₂ and local emissions

Within electric driving, battery electric vehicles are suited for urban driving – small cars and shorter driving ranges

- Plug in hybrids and fuel cell vehicles are suitable for medium and larger cars with higher annual driving distance
- For this segment amounting for 50% of the fleet and 70% of the CO₂ emissions, fuel cell vehicles are an attractive low carbon solution
- After 2025, the total cost of ownership of electric vehicles is comparable to ICEs
- To drive the uptake of fuel cell vehicles, significant infrastructure investments are required in the first decades (~ EUR 3 billion up to 2020)

There is not one technology outperforming others across all C/D SEGMENT 2030 dimensions

1 Consumer economics can be different, dependent on tax region

2 Fast charging for BEVs implies reduced battery lifetime, lower battery load and higher infrastructure costs than included in this study

C/D SEGMENT

BEVs and FCEVs can achieve significantly low CO₂ emissions, with BEVs showing limitations in driving range

1 ICE range for 2050 based on fuel economy improvement and assuming tank size stays constant. Assuming 6% CO2 reduction due to biofuels by 2020; 24% by 2050

SOURCE: Study analysis

Electric vehicles are more energy efficient than ICEs over a broader range of feedstocks

1 All power-trains have different performance criteria and therefore different driving missions

2 CNG used in gasoline ICE; diesel production from natural gas through Fischer-Tropsch process

3 Gasoline and diesel production from coal-to-liquids transformation through Fischer-Tropsch process

SOURCE: CONCAWE-EUCAR JEC-WTW study; study analysis

2020

1 Ranges based on data variance and sensitivities (fossil fuel prices varied by +/- 50%; learning rates varied by +/- 50%)

The cost of a fuel cell system is expected to reduce by 90% by 2020 (80% for BEV-specific parts incl. battery and e-motor)

SOURCE: Study analysis

C/D SEGMENT

In the long run, FCEVs have a TCO advantage over BEVs and PHEVs 12050 in the larger car/long distance segments

EUR/year/car¹, assuming no cost of CO₂

1 Constant lifetime, but different total driving distances (90,000 km; 180,000 km; 360,000 km) 2 Calculated as ICE TCO minus lowest FCEV/BEV/PHEV TCO. Negative numbers indicate a TCO advantage over the ICE

Cost of H2 production and supply differ significantly by technology, in the base case a 70% reduction is projected by 2025

SOURCE: Study analysis

Economic gap and infrastructure buildup require new business and funding models

 Significant economic gap in the early ramp-up phase

25% FCEV SCENARIO

- Gap needs to be absorbed by all stakeholders
 - Customer (price premium)
 - OEMs (investment)
 - Infrastructure industry (investment)
 - Public/regulator (taxes, subsidies, incentives)
- Significant infrastructure investment required (underutilized in ramp-up)
- Industry groups with different risk profiles
- Synchronization of industry investments required
- Investments need require new integrated business models

1 E.g., selling an FCEV below its cost

H₂ Mobility is a second step in evaluating the commercialization of a hydrogen infrastructure and fuel cell electric vehicles

- Objective
- Fact-based evaluation of the market potential of FCEV compared to BEV, PHEV, ICE
- Development of an integrated perspective across the H₂ value chain based on proprietary industry data
- Assessment of hydrogen retail infrastructure roll-out in GER
- Definition of an integrated roll-out scenario for FCEV market penetration with major car OEMs
- Establishment of a future consortium for the H₂ infrastructure roll-out
- Implementation of a business case

Main achievements and selected end products for pilot market Germany - intermediate results

Roll-out scenarios for H ₂ station network and FCEVs	 Development of FCEV roll-out scenarios with car OEMs via "clean team" based on assumptions (e.g., incentives, market environment) Assessment of H₂ station rollout and network requirements (e.g., density, sizes) 	FCEV car park
Roll out regions and timing	 Analyses of German regions on traffic density, income per capita, car registrations, etc. Definition of "focus regions" and connecting highways 	20XX 20XX
H ₂ production and supply road map	 Assessment of H₂ production technologies on cost and CO₂ emissions (water electrolysis, steam methane reforming, etc.) Definition of H₂ production and supply mixes focusing on CO₂ abatement, sustainability, and economic efficiency 	Carbon footprint
Holistic roll-out cases	 Description of consistent rollout case for Germany Financial assessment of roll-out cases including NPV, investment, payback time Evaluation of risks and sensitivities 	

High momentum of H₂ Mobility-related initiatives in other countries

Overview of selected countries

- Announcement by 13 companies (3 OEMs and 10 energy and infrastructure providers) and the Ministry of Transport to commercialize FCEV
 - Mass production of FCEV by 2015
 - 100 HRS operational in 4 four metropolitan areas and connecting highways planned, 1,000 HRS in 2020, and 5,000 HRS in 2030

- South Korea laid out "Green Car Roadmap" including action for EV, PHEV, HEV, FCEV, and bio diesel
- Plans to have 168 HRS and 100,000 FCEV deployed by 2020
- Announced government support for EV of up to EUR 20,000 in rebates, tax exemptions, and bonus/malus
- Incentives for FCEV will be defined later but are expected to be comparable to EV

- Hyundai-Kia signed MOU with four Scandinavian countries (Norway, Sweden, Denmark and Iceland) for the provisional distribution of FCEV
- FCEV will be used to complement the Scandinavian Hydrogen Highway Partnership (SHHP) fleet of 26 FCEV and to be increased to 46 in 2011
- SHHP also plans to increase number of HRS from 7 to 15 by 2015