HYDROGEN INFRASTRUCTURE FOR A SUSTAINABLE MOBILITY - A ROADMAP FOR THE GERMAN FEDERAL STATE BADEN-WUERTTEMBERG UNTIL 2030

F-cell / Session B1: Hydrogen Infrastructure

Christopher Hebling, Tom Smolinka, Christopher Voglstätter

Fraunhofer-Institut für Solare Energiesysteme ISE

Agenda

- Introduction
 - Motivation and goals
 - Approach of this study
- Current state in the development of hydrogen refuelling stations (HRS)
- Hydrogen roadmap for Baden-Wuerttemberg
 - Three phase approach
 - Hydrogen demand for road traffic
 - Number of required HRS
- Conclusion and recommend actions
Sustainable Mobility
Something we must achieve in the next decades.

- Challenges for our mobility
 - Limited resources in fossil energy carriers
 - Reducing GHG emissions
 - Pollutant emissions in urban centres

- Expected benefits
 - Local: zero emissions
 - Global: reduced emission by usage of renewable energy sources (RES)
 - Domestic value-added chain

- Technical solution for road traffic
 - Battery electric vehicle (BEV)
 - Fuel cell electric vehicle (FCEV)

- Tasks and objectives of this study
 - Survey on current state of hydrogen refuelling stations in BW/Germany/world-wide
 - Discussion of required demand
 - Development of a roadmap for BW until 2030
 - Formulation of recommend actions
Methodology
How did we come to our results?

Own experience
- 700bar H2 refuelling station at Fraunhofer ISE
- 2 FCEV from Daimler
- H2 production and P2G projects
- Base data from BMU pilot study
- Vehicle forecast for Baden-Wuerttemberg
- Comparis. with other studies

Scenarios
- Literature survey
 - Current technological state
 - Stack holder analysis
 - International goals
 - International activities
 - All stack holder
 - Authorities/Users
 - Manufacturers/OEMs
 - Multi stage evaluation

Interviews with experts
Main components of the filing station:

- (Pressure) electrolyser (30 bar / 6 Nm³/h)
- Mechanical compressor
- Storage tanks
- Dispenser units (200/350/700bar)
- Filling according to SAE J2600
- Integrated container solution
- Publicly accessible filling station
- Located at premises of Fraunhofer ISE
- Coupled with renewable energies:
 - Photovoltaic modules (roof)
 - Certified green electricity
700bar Hydrogen Refueling Stations in Germany
15 out of 50 until 2015 are built already …

Publicly Accessible Hydrogen Refueling Stations in Germany (CGH2, 700 bar)

Under construction

Berlin, Airport BER
Total/Enertrag

Berlin, Holzmarktstraße
Linde/Total

Berlin, Sachsendamm
Shell

Frankfurt
facility Höchst
AGIP

Munich,
Detmoldstraße
Total (only LH2)

Updated chart based on
O. Ehret – NOW, 2012
Selected Typical System Layout of HRS (1/2)

CGH$_2$ delivery by trailer
Selected Typical System Layout of HRS (2/2)

On-site hydrogen production by water electrolysis

onsite-System: Elektrolyse / Reformer (1 – 50 bar)

Mitteldruckkompressor

Hochdruckkompressor

Mitteldruckspeicher (200 – 450 bar)

Rückschlagventil

Mitteldruckspeicher (800 – 1000 bar)

Booster-Kompressor
Status Quo 700bar hydrogen refueling stations
What needs to be done?

- Technology
 - Increasing reliability and availability
 - Further development of components
 - Standardisation of technical concepts
 - Enhancements in codes and standards
- Beyond technical issues
 - Development of business models
 - Creation of real competition in the supply chain and under manufacturers
 - Higher public acceptance and visibility
 - Set up an infrastructure roadmap
General Hydrogen Roadmap

Development in three phases

Phase 1: Research, development and demonstration (until 2015)
- Further technical development, testing of whole systems
- Development of codes and standards, larger public visibility

Phase 2: Market preparation (until 2020/21)
- Increased number of standardised HRS → high reliability (learning curve)
- Chicken-egg dilemma solved (cluster and corridors) → High user acceptance
- Establishment of business models and legal regulations

Phase 3: Market introduction and commercialisation (until 2030)
- Cost reduction through economy of scale
- Inclusion of rural areas in the infrastructure → 100% coverage with HRS
- Commercial HRS operation → government funding decreases
Hydrogen Roadmap
FCEV forecast derived from different studies

- Increasing numbers of hydrogen passenger cars in Baden Wuerttemberg
 - BMU: Pilot study 2011
 - ZSW: e-mobil study
 - H2M: "coalition study"
- Forecast is calculated from data about market penetration

ZSW: Centre for Solar Energy and Hydrogen Research Baden-Wuerttemberg
H2M: H2 Mobility (an European industrial initiative)
Hydrogen Roadmap
FCEV forecast derived from different studies

- Increasing numbers of hydrogen based light and heavy duty vehicles and busses in Baden Wuerttemberg
 - BMU: Pilot study 2011
 - ZSW: e-mobil study
- Again: Forecast is calculated from data about market penetration
Hydrogen Roadmap
How many HRS do we need in Baden Wuerttemberg?

- Refuelling stations of type S, M and L according to H2 Mobility
- Typ S ist mobile
- Operation time: 20 years
- Av. utilisation climbs up to 80% until 2025

<table>
<thead>
<tr>
<th>Typ</th>
<th>1 dispenser</th>
<th>2 dispensers</th>
<th>4 dispensers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.</td>
<td>Max.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>H2 kg/d</td>
<td>212</td>
<td>420</td>
<td>1.000</td>
</tr>
</tbody>
</table>

![Graph showing the number of H2 stations per year](image)
Hydrogen Roadmap

HRS infrastructure close to general CEP strategy

Phase 1 - until 2015

- Main goals
 - Strengthen cluster
 - Build up corridors
- Cluster Stuttgart with extension to area Karlsruhe
- Connection of cluster Frankfurt with Rhein - Neckar - area
- Corridor A8: Connection to cluster München
- Corridor A5: Connection to Switzerland and France
Wasserstoff-Roadmap
Achieving user's acceptance

Phase 2 - until 2020/21

- Market preparation to overcome the chicken - egg - problem
- Acceptance similar to CNG
- Focus on urban areas:
 - Stuttgart - Karlsruhe
 - Rhein-Neckar area
 - Donau-Iller area
 - Bodensee area
- Redundancy at the corridors
 - Highways A5, A6, A8, A81
 - National roads B10-14-29-30-31-290-311
Hydrogen Roadmap
Complete coverage only with commercialisation

Phase 3 - Commercialisation
- Ramp up beginning 2020/21
- Extension to the rural areas (mean utilisation):
 - 2020: 70 HRS (25 %)
 - 2025: 195 HRS (70 %)
 - 2030: 330 HRS (80 %)
- Limit of CGH2 and LH2 trailer in delivery capacity after ~ 2030
- Possible further options > 2030:
 - H2 pipeline
 - On-site H2 production
Hydrogen and Urban Public Transport
Large opportunity for market preparation in 2nd phase ?

- According to studies:
 No large impact of busses for German's goal in climate protection

- But: hydrogen and urban busses fit together well:
 - FC busses best option for "zero emission" public road transport
 - Support "fine dust protection" policy
 - Large and continuous H2 demand enables early commercial operation of HRS
 - Large publicity and higher user acceptance
Hydrogen and Urban Public Transport
Large opportunity for market preparation in 2nd phase?

- BUT high requirements for HRS in public transport sector
 - Reliability of stations and uninterrupted availability of h2-supply
 - HRS capacity has to grow with FC bus fleet → modularity
 - H2 delivery and large footprint
- Differences to HRS for passenger cars
 - Larger storage tanks
 - Larger compressors
 - separate dispenser unit and nozzle for busses
 - No pre-cooling, lower filling pressures
Conclusions
What have we learnt from this work?

Possible development of a hydrogen infrastructure:

- Build up of a basic HRS infrastructure with the help by the public body
- Deployment of small mobile HRS which can be relocated and replaced once higher demand is established
- In urban centres installation of medium and large HRS with LH2 delivery
- Once the H2 production capacity of current sources is exceeded: Construction of new H2-production sites close to highways and urban centres (with large HRS) which supply HRS in cities
- At a certain point (~ 2030) LH2 delivery in urban/industrial centres might be replaced by H2 pipeline
- 2030+: Pipeline delivery allows HRS with smaller footprint, reduced HRS capital costs and higher refuelling capacity
Conclusions
Recommend actions (only short extract)

- Public funding and support should depend on delivery of "green" hydrogen
- H2 infrastructure should adapt to expansion of RES concerning timeline and local distribution → closer investigation
- Further development of funding schemes for phase 2 und 3 required → Tax incentives? Government aid for HRS?
- Increased visibility could be reached by selected "light house projects" → including municipal utilities and urban transport companies
- Manufactures and suppliers should agree on standardised concepts for HRS → e.g. functional description according to H2M
Thanks a lot for your kind attention!

Fraunhofer-Institut für Solare Energiesysteme ISE

Dr. Tom Smolinka
tom.smolinka@ise.fraunhofer.de
www.ise.fraunhofer.de