F-Cell 2013

Market Introduction of Electric Vehicles - Opportunities and Challenges

Prof. Dr. Christian Mohrdieck, 30 September 2013

Daimler AG

Prof. Dr. Christian Mohrdieck / Daimler AG

Responsibility for our Blue Planet

- Worldwide rising demand for mobility will increase CO₂ emissions challenge.
- Fossil resources are limited and will therefore become more expensive

Global regulations impose major challenges

Our Roadmap to a Sustainable Mobility

Prof. Dr. Christian Mohrdieck / Daimler AG

The Powertrain Portfolio for the Mobility of Tomorrow

The new S 500 PLUG-IN HYBRID

Driving pleasure, efficiency, comfort & safety at its best

- 245 + 80 kW 480 + 340 Nm 30 km electrical range
 - 3 I/100km 69 g CO2

Emission-free driving in urban areas and pure driving comfort on long distances.

ิค

Daimler's Electric Vehicle Technology Roadmap

Electric vehicles with fuel cell & battery

Daimler is dedicated to commercialize electric vehicles with fuel cell

smart fortwo electric drive

Overview of the electrical drive train components

Specifications						
Vehicle	Vehicle smart fortwo electric drive					
Engine	ingine Max. Output: 55 kW (75 hp)					
Range	145 km					
Top Speed	125 km/h					
Battery	Lithium-Ion Battery Capacity: 17,6 kWh Deutsche Accumotive					

The New Mercedes-Benz B-Class Electric Drive

Specifications*					
Vehicle	Mercedes-Benz B-Class Electric Drive				
Launch	2014: USA (followed by Europe)				
Engine	130 kW				
Range	200 km (NEFZ), 115 Miles (US City)				
V _{max}	160 km/h (100 mph)				
Acceleration 0-100 km/h (0-60 mph)	7.9 sec				
Battery	Lithium-Ion				
Charging time: 100 km (NEDC) / 60 miles (US City)	ECE: 1,5 h @ 400V / USA: 2 h @ 240V				

* preliminary values

Technological Challenges of e-mobility

Leightweight construction

- Carbon Fibre Reinforced Plastic
- Intelligent Design
- Aluminium
- ▶ ...

...

3 Energy Efficient E-Drive Components

- ► E-Drive
- Power Electronics
- Compressor
- ▶...

² <u>Air Conditioning/Energy Management</u>

- Cabin-Isolation
- Body-Near Air Conditioning
- Utilisation Of Waste Heat

⁴ Battery Development

- Material/Cell-Chemistry
- Cooling
- Power Density

..

History of e-mobility – limitations of battery technology prevented successful commercialization

"Baby Benz", BR 190 (1993) with zebra-battery in the front and rear

Sedan (1982) with nickel-iron-battery (600 kg) in the trunk

Potential of High-Voltage Batteries Usable Energy of Cells in Dependence on Power

Periodic Table of the Elements Development potential of Li-lon batteries* ΔV Year 2010 2012 2017 Spec. Energy [Wh/kg] 120 140 160 Range [km]** 135 160 180 Spec. Power [W/kg] 600 The redox potential of the elements determines the capability for the 400 utilization in batteries / accumulators Li-lon NiMH Source: Daimler AG, RWTH Aachen 200 Range of the smart electric drive **Energy optimized EV batteries** Spec. Energy [Wh/kg] 50 75 125 150 175 100 200

- The Li-lon battery has limited potential concerning energy and power density
- Worldwide research programs with target of > 200 Wh/kg
- Promising battery concepts (e.g. LiS, LiO₂) are in early research stage

Challenges for the market penetration of e-mobility

Developing next generation battery

Secure raw materials supply

Infrastructure

Prof. Dr. Christian Mohrdieck / Daimler AG

Customer Acceptance

Eine Initiative der Bundesregierung

Incentives

The Current Generation of Fuel Cell Vehicles

"Driving the Future" becomes Reality

Technical Data						
Vehicle	Mercedes-Benz B-Class					
Fuel Cell System	PEM, 90 kW (122 hp)					
Engine	Output (Cont./ Peak) 70kW / 100kW (136 hp) Max. Torque: 290 Nm					
Fuel	Compressed hydrogen (70 MPa)					
Range	380 km (NEDC)					
Top Speed	170 km/h					
Li-Ion Battery	Output (Cont./ Peak): 24 kW / 30 kW (40 hp) Capacity: 6.8 Ah, 1.4 kWh					

Successful Daily Operations in Customer Hands Mercedes-Benz B-Class F-CELL – Customer voices ...

I am fascinated by the torque and the silence.

My next vehicle will be a fuel cell car again.

7 It is such a smooth ride[.] My 13year old kid "forced" me to demonstrate the car at school to his class mates. The FCEV was clearly the most special car around.

I expected a Mercedes -and I got a Mercedes.

over 3 Mio. km driven in customer hands

I never experienced any restrictions because it is a gas vehicle. I frequently take the F-CELL on the ferry.

^I am driving the future. Literally. After driving a FCEV, you don't want to get back to your old car

Packaging of Fuel Cell System

Through a further modularization of the fuel cell specific components, the packaging of future generations of FC vehicles will be simplified.

The significantly more compact dimensions would allow a accommodation in the engine compartment of a conventional vehicle.

Cooperation Nissan/Ford/Daimler

Asia, Europe and US – Unique collaboration across three continents

Cooperation Nissan/Ford/Daimler

"The Hydrogen Vehicle for the World"

H₂-Infrastructure and market conditions are expected to be on an appropriate level by 2017. From 2017 onwards, we are planning for series production of F-Cell vehicles.

Electromobility with batteries and fuel cells is already a reality today A total of nine locally emission free vehicles today

Thanks for your attention!

The Trend to Electrification ...

Market penetration of electric vehicles in 2020 (Bain & Company 2010)

- Dramatic Chance
- 50-100 Mrd. US\$ world-wide
- In many metropolis
- Significant Chance
- 10-30 Mrd. US\$ world-wide
- Barely introduced
- In discussion
- Only localy

Climate Chance:

Subsidy:

Battery technology determines the success of e-mobility

			Influencing factors				
			Technology		Politics		
		Battery	Drive unit with gear box and e-motor	Charging and interface	Standardization	Political environment	
5	Range	X	X				
	Charging time	X		X			
	Driving characteristic	X	X				
:	Vehicle design	Х					
5	Cost / TCO	Х	X	X	Х	X	
5	Safety	Х			x		
	Lifetime	X					
	Charging infrastr.	X		Х	Х	X	

The battery as key component has a significant impact on the customer acceptance and the highest proportion of value-added.

Challenges of the Fuel Cell and Hydrogen Technology

